Cardiac Electrophysiological Alterations in Heart/Muscle-Specific Manganese-Superoxide Dismutase-Deficient Mice: Prevention by a Dietary Antioxidant Polyphenol
نویسندگان
چکیده
Cardiac electrophysiological alterations induced by chronic exposure to reactive oxygen species and protective effects of dietary antioxidant have not been thoroughly examined. We recorded surface electrocardiograms (ECG) and evaluated cellular electrophysiological abnormalities in enzymatically-dissociated left ventricular (LV) myocytes in heart/muscle-specific manganese-superoxide dismutase-deficient (H/M-Sod2(-/-)) mice, which exhibit dilated cardiomyopathy due to increased oxidative stress. We also investigated the influences of intake of apple polyphenols (AP) containing mainly procyanidins with potent antioxidant activity. The QRS and QT intervals of ECG recorded in H/M-Sod2(-/-) mice were prolonged. The effective refractory period in the LV myocardium of H/M-Sod2(-/-) mice was prolonged, and susceptibility to ventricular tachycardia or fibrillation induced by rapid ventricular pacing was increased. Action potential duration in H/M-Sod2(-/-) LV myocytes was prolonged, and automaticity was enhanced. The density of the inwardly rectifier K(+) current (I K1) was decreased in the LV cells of H/M-Sod2(-/-) mice. The AP intake partially improved these electrophysiological alterations and extended the lifespan in H/M-Sod2(-/-) mice. Thus, chronic exposure of the heart to oxidative stress produces a variety of electrophysiological abnormalities, increased susceptibility to ventricular arrhythmias, and action potential changes associated with the reduced density of I K1. Dietary intake of antioxidant nutrients may prevent oxidative stress-induced electrophysiological disturbances.
منابع مشابه
Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.
Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2(-/-)), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered t...
متن کاملEUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant.
OBJECTIVES The purpose of this study was to identify apoptosis-inducing factor (AIF) as a cardiac mitochondrial antioxidant and assess the efficacy of EUK-8, a salen-manganese catalytic free radical scavenger, to protect the AIF-deficient myocardium against pressure overload. BACKGROUND Oxidative stress has been postulated to provoke cell death and pathologic remodeling in heart failure. We r...
متن کاملUK-8, a Superoxide Dismutase and Catalase imetic, Reduces Cardiac Oxidative Stress nd Ameliorates Pressure Overload-Induced eart Failure in the Harlequin Mouse Mutant
OBJECTIVES The purpose of this study was to identify apoptosis-inducing factor (AIF) as a cardiac mitochondrial antioxidant and assess the efficacy of EUK-8, a salen-manganese catalytic free radical scavenger, to protect the AIF-deficient myocardium against pressure overload. BACKGROUND Oxidative stress has been postulated to provoke cell death and pathologic remodeling in heart failure. We rec...
متن کاملN-acetylcysteine increases manganese superoxide dismutase activity in septic rat diaphragms.
The antioxidant N-acetylcysteine (NAC) prevented sepsis-induced diaphragmatic dysfunction. As an indirect antioxidant NAC was shown to induce superoxide dismutase (SOD) activity in immune cells from endotoxaemic mice. The aim of this study was to assess whether NAC acts as an indirect antioxidant by inducing manganese (Mn)-SOD activity in the diaphragms of endotoxaemic rats, while preventing mu...
متن کاملNeurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice.
Manganese superoxide dismutase (SOD2) converts superoxide to oxygen plus hydrogen peroxide and serves as the primary defense against mitochondrial superoxide. Impaired SOD2 activity in humans has been associated with several chronic diseases, including ovarian cancer and type I diabetes, and SOD2 overexpression appears to suppress malignancy in cultured cells. We have produced a line of SOD2 kn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014